The Spacing Principle for Unlearning Abnormal Neuronal Synchrony

نویسندگان

  • Oleksandr V. Popovych
  • Markos N. Xenakis
  • Peter A. Tass
چکیده

Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-kindling Induced by Two-Stage Coordinated Reset Stimulation with Weak Onset Intensity

Abnormal neuronal synchrony plays an important role in a number of brain diseases. To specifically counteract abnormal neuronal synchrony by desynchronization, Coordinated Reset (CR) stimulation, a spatiotemporally patterned stimulation technique, was designed with computational means. In neuronal networks with spike timing-dependent plasticity CR stimulation causes a decrease of synaptic weigh...

متن کامل

Augmented brain function by coordinated reset stimulation with slowly varying sequences

Several brain disorders are characterized by abnormally strong neuronal synchrony. Coordinated Reset (CR) stimulation was developed to selectively counteract abnormal neuronal synchrony by desynchronization. For this, phase resetting stimuli are delivered to different subpopulations in a timely coordinated way. In neural networks with spike timing-dependent plasticity CR stimulation may eventua...

متن کامل

Coordinated reset neuromodulation for Parkinson's disease: Proof-of-concept study

BACKGROUND The discovery of abnormal synchronization of neuronal activity in the basal ganglia in Parkinson's disease (PD) has prompted the development of novel neuromodulation paradigms. Coordinated reset neuromodulation intends to specifically counteract excessive synchronization and to induce cumulative unlearning of pathological synaptic connectivity and neuronal synchrony. METHODS In thi...

متن کامل

Title: Computational Study of Synchrony in Fields and Microclusters of Ephaptically Coupled Neurons

1 Neuronal hyper-synchrony is implicated in epilepsy and other diseases. The low frequency, spa2 tially averaged electric fields from many thousands of neurons have been shown to promote 3 synchrony. It remains unclear whether highly transient, spatially localized electric fields from 4 single action potentials (ephaptic coupling) significantly affect spike timing of neighboring cells 5 and, in...

متن کامل

Maladaptive Neural Synchrony in Tinnitus: Origin and Restoration

Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting-state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane-potential changes in local neural groups as reflected in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015